If it's not what You are looking for type in the equation solver your own equation and let us solve it.
.1x^2-30x+2000=0
a = .1; b = -30; c = +2000;
Δ = b2-4ac
Δ = -302-4·.1·2000
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-10}{2*.1}=\frac{20}{0.2} =100 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+10}{2*.1}=\frac{40}{0.2} =200 $
| 2n+5=47-5n | | 30x+10=0 | | 4x+10+2x+8=90 | | 3x-10=(x/3)+9 | | 124+2x+124+2x=x | | 3x-10=x/3+9 | | 19-5v=2v+5 | | 10x+2=6(x+5) | | -6(3-2q)=432 | | 12x+19+4x=180 | | 5-(3x-12)=8 | | 4x+4x+12x+19=180 | | 12x+19+4x+x=180 | | −3(x−4)=3(−8−12x) | | x=0.5(2x+4+x-3) | | -11n=10=252 | | (−5+x)/2=−9 | | 9(t+4)=45 | | -9(x-10)^2=-4 | | 3(x+2)=21(x+5) | | 3(x+2)=21(x+5 | | 6(x+2)/3=3x-1 | | y=1.90+1.40+ | | 10d-24=16 | | 3v-3=-3(v-5) | | x7-6=7 | | 6x-6=14-2x | | -x2+4X-X-3+3=0 | | 7=3(y+4)-8y | | 8x-182=2x-8 | | 19=x/2=4 | | 7x=0.5(x+2+76) |